Immune checkpoint inhibitors: autoimmune events and data mining

Authors

DOI:

https://doi.org/10.59681/2175-4411.v17.2025.1160

Keywords:

data mining, immunotherapy, immune checkpoint inhibitors, neoplasms, drug-related side effects and adverse reactions, biomedical technology

Abstract

Objective: To ascertain which autoimmune events related to the use of immune checkpoint inhibitors have been discovered through data mining (DM) from the literature. Method: A rapid review was used. The databases searched were the Virtual Health Library (VHL), Embase and Pubmed. Fifteen studies were selected for analysis. Results: the most common autoimmune events found in the literature from data mining on the use of immune checkpoint inhibitors were renal, skin, musculoskeletal, hematological, pulmonary, cardiac and gastrointestinal toxicities, some of which were fatal. Conclusion: various events can occur with the use of immunotherapy, reinforcing the need for individualized monitoring. It is suggested that this therapy be investigated according to tumor type, correlating with demographic characteristics, as well as the use of information technologies to support health professionals.

Author Biographies

Natália Marmitt, Universidade Federal de Ciências da Saúde de Porto Alegre

Master's student in the Postgraduate Program in Information Technology and Health Management. Federal University of Health Sciences of Porto Alegre - UFCSPA. Porto Alegre (RS), Brazil. Nurse. Hospital de Clínicas de Porto Alegre.

Sheron Tannara Vargas, Universidade Federal de Ciências da Saúde de Porto Alegre

Master's student in the Postgraduate Program in Information Technology and Health Management. Federal University of Health Sciences of Porto Alegre - UFCSPA. Porto Alegre (RS), Brazil. Nurse. Santa Casa de Misericórdia de Porto Alegre.

Agnes Peruzzo Innocente, Hospital de Clínicas de Porto Alegre

Master in Health Teaching. Nurse. Hospital de Clínicas de Porto Alegre. Porto Alegre (RS), Brazil.

Diogo Ferreira Ducatti, Hospital de Clínicas de Porto Alegre

Master in Health Sciences. Nurse. Hospital de Clínicas de Porto Alegre. Porto Alegre (RS), Brazil.

Gabriel Ricardo Fernandes, Universidade Federal de Ciências da Saúde de Porto Alegre

Undergraduate student in Health Management. Federal University of Health Sciences of Porto Alegre - UFCSPA. Porto Alegre (RS), Brazil.

Alessandra Dahmer, Universidade Federal de Ciências da Saúde de Porto Alegre

PhD in Computer Science. Professor at the Federal University of Health Sciences of Porto Alegre - UFCSPA. Porto Alegre (RS), Brazil.

Mellina da Silva Terres, Universidade Federal de Ciências da Saúde de Porto Alegre

Professora e atual Coordenadora do Programa de Pós-Graduação em Tecnologias da Informação e Gestão em Saúde da Universidade Federal de Ciências da Saúde de Porto Alegre.

References

Shankar A, Wallbridge IG, Yau C, Saini D, Roy S, Bharati SJ, et al. Development of management strategies for immune-related adverse effects of immunotherapies used in oncological treatment. Asia Pac J Oncol Nurs. 2022;9(1):7-11 [citado 2025 mai 27]. Disponível em: https://pubmed.ncbi.nlm.nih.gov/35528796/

Medina P, Jeffers KD, Trinh VA, Harvey RD. The Role of Pharmacists in Managing Adverse Events Related to Immune Checkpoint Inhibitor Therapy. J Pharm Pract. 2020;33(3):338-49 [citado 2025 mai 27]. Disponível em: https://pubmed.ncbi.nlm.nih.gov/31694455/

Pedro Júnior J, Gomes JP, Gama JMBM, Sales ISL, Smit SBA, Silva MF, et al. Atualização sobre o uso da imunoterapia no tratamento do Câncer. Braz. J. Hea. Rev. [Internet]. 2023;6(3):12101-14 [citado 2025 mai 27]. Disponível em: https://ojs.brazilianjournals.com.br/ojs/index.php/BJHR/article/view/60488

Johnson KB, Patel NR. Biomedical Informatics and Health Information Technology: a Critical, Pragmatic Collaboration for Clinical Transformation. J Gen Intern Med. 2020;36(2):530–2 [citado 2025 mai 27]. Disponível em: https://pubmed.ncbi.nlm.nih.gov/32323136/

Hassan M, Awan FM, Naz A, Andrés-Galiana EJ, Alvarez O, Cernea A, et al. Innovations in Genomics and Big Data Analytics for Personalized Medicine and Health Care: A Review. Int J Mol Sci[Internet]. 2022;23(9):4645 [citado 2025 mai 27]. Disponível em: https://pubmed.ncbi.nlm.nih.gov/35563034/

Garritty C, Gartlehner G, Nussbaumer-Streit B, King VJ, Hamel C, Kamel C, et al. Cochrane Rapid Reviews Methods Group Offers Evidence-Informed Guidance to Conduct Rapid Reviews. J Clin Epidemiol [Internet]. 2021;130(130):13–22 [citado 2025 mai 27]. Disponível em: https://pubmed.ncbi.nlm.nih.gov/33068715/

Schünke LC, Mello B, Costa CA, Antunes RS, Rigo SJ, Ramos GO, et al. A rapid review of machine learning approaches for telemedicine in the scope of COVID-19. Artif Intell Med. 2022;129 [citado 2025 mai 27]. Disponível em: https://pubmed.ncbi.nlm.nih.gov/35659388/

Schiavenato M, Chu F. PICO: What it is and what it is not. Nurse Educ Pract. 2021;56:103194 [citado 2025 mai 27]. Disponível em: https://pubmed.ncbi.nlm.nih.gov/34534728/

Rayyan. Intelligent Systematic Review [Homepage]. 2022 [citado 2025 mai 27]. Disponível em: https://www.rayyan.ai/

Downs SH, Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J Epidemiol Community Health [Internet]. 1998;52(6):377-84 [citado 2025 mai 27]. Disponível em: https://europepmc.org/article/MED/9764259

Pundole X, Sarangdhar M, Suärez-Almazor ME. Rheumatic and Musculoskeletal Adverse Events with Immune Checkpoint Inhibitors: Data from the United States Food and Drug Administration Adverse Event Reporting System. J Immunother Precis Oncol. 2019;2(3):65–73 [citado 2025 mai 27]. Disponível em: https://ouci.dntb.gov.ua/en/works/98zJLA24/

Ji H, Tang X, Dong Z, Song L, Jia Y. Adverse Event Profiles of Anti-CTLA-4 and Anti-PD-1 Monoclonal Antibodies Alone or in Combination: Analysis of Spontaneous Reports Submitted to FAERS. Clin Drug Investig. 2019;39(3):319–30 [citado 2025 mai 27]. Disponível em: https://pubmed.ncbi.nlm.nih.gov/30674039/

Fan Q, Hu Y, Yang C, Zhao B. Myocarditis following the use of different immune checkpoint inhibitor regimens: A real-world analysis of post-marketing surveillance data. Int Immunopharmacol. 2019;76:105866 [citado 2025 mai 27]. Disponível em: https://pubmed.ncbi.nlm.nih.gov/31491729/

Hasegawa S, Ikesue H, Nakao S, Shimada K, Mukai R, Tanaka M, et al. Analysis of immune‐related adverse events caused by immune checkpoint inhibitors using the Japanese Adverse Drug Event Report database. Pharmacoepidemiol Drug Saf. 2020;29(10):1279–94 [citado 2025 mai 27]. Disponivel em: https://pubmed.ncbi.nlm.nih.gov/32869941/

Chen G, Qin Y, Fan Q, Zhao B, Mercola D, Li X. Renal adverse effects following the use of different immune checkpoint inhibitor regimens: A real‐world pharmacoepidemiology study of post‐marketing surveillance data. Cancer Med. 2020;9(18):6576-85 [citado 2025 mai 27]. Disponível em: https://pubmed.ncbi.nlm.nih.gov/32720449/

Bai X, Lin X, Zheng K, Chen X, Wu X, Huang Y, et al. Mapping endocrine toxicity spectrum of immune checkpoint inhibitors: a disproportionality analysis using the WHO adverse drug reaction database, VigiBase. Endocrine. 2020;69(3):670–81 [citado 2025 mai 27]. Disponível em: https://pubmed.ncbi.nlm.nih.gov/32507965/

Hu Y, Gong J, Zhang L, Li X, Li X, Zhao B, et al. Colitis following the use of immune checkpoint inhibitors: A real-world analysis of spontaneous reports submitted to the FDA adverse event reporting system. Int Immunopharmacol. 2020;84:106601 [citado 2025 mai 27]. Disponível em: https://pubmed.ncbi.nlm.nih.gov/32422528/

Chen C, Wu B, Zhang C, Xu T. Immune-related adverse events associated with immune checkpoint inhibitors: An updated comprehensive disproportionality analysis of the FDA adverse event reporting system. Int Immunopharmacol. 2021;95:107498 [citado 2025 mai 27]. Disponível em: https://pubmed.ncbi.nlm.nih.gov/33725634/

Ma R, Wang Q, Meng D, Li K, Zhang Y. Immune checkpoint inhibitors-related myocarditis in patients with cancer: an analysis of international spontaneous reporting systems. BMC Cancer. 2021;21(1):38 [citado 2025 mai 27]. Disponivel em: https://pubmed.ncbi.nlm.nih.gov/33413213/

Chen C, Zhang C, Jin Z, Wu B, Xu T. Sex differences in immune-related adverse events with immune checkpoint inhibitors: data mining of the FDA adverse event reporting system.Int J Clin Pharm. 2022;44(3):689-697 [citado 2025 mai 27]. Disponível em: https://pubmed.ncbi.nlm.nih.gov/35449347/

Chen C, Zhang C, Wu B, Xu T. Immune-related adverse events in older adults: Data mining of the FDA Adverse Event Reporting System. J Geriatr Oncol. 2022;13(7):1017-1022 [citado 2025 mai 27]. Disponível em: https://pubmed.ncbi.nlm.nih.gov/35660091/

Zhang P, Lao D, Chen H, Zhao B, Du Q, Zhai Q, et al. Neuromuscular junction dysfunctions due to immune checkpoint inhibitors therapy: An analysis of FAERS data in the past 15 years. Front Immunol. 2022;13:778635 [citado 2025 mai 27]. Disponível em: https://pubmed.ncbi.nlm.nih.gov/36081514/

Liu Y, Chen Y, Zeng Z, Liu A. Arrhythmic events associated with immune checkpoint inhibitors therapy: A real‐world study based on the Food and Drug Administration Adverse Event Reporting System database. Cancer Med. 2022;12(6):6637–48 [citado 2025 mai 27]. Disponível em: https://pubmed.ncbi.nlm.nih.gov/36426382/

Shi, H., He, Y., Dan, S., Yang, L., Wang, J., Chen, L., & Chen, Z. (2024). Endocrine system-related adverse events associated with PD-1/PD-L1 inhibitors: data mining from the FDA adverse event reporting system. Frontiers in medicine, 11, 1366691. https://doi.org/10.3389/fmed.2024.1366691

Lyu L, Bian S, Guan K, Zhao B. Eosinophil-induced adverse events induced by treatment with programmed cell death 1/ligand 1 inhibitors: A comprehensive disproportionality analysis of the FDA adverse event reporting system. Int J Cancer. 2025; 157(2): 317-324. https://doi.org/10.1002/ijc.35398.

Jain P, Gutierrez Bugarin J, Guha A, Jain C, Patil N, Shen T, et al. Cardiovascular adverse events are associated with usage of immune checkpoint inhibitors in real-world clinical data across the United States. ESMO Open. 2021 Oct;6(5):100252. https://doi.org/10.1016/j.esmoop.2021.100252. Epub 2021 Aug 27. Erratum in: ESMO Open. 2021 Dec;6(6):100286. https://doi.org/10.1016/j.esmoop.2021.100286.

Ilustração gerada por inteligência artificial representando células do sistema imunológico nas cores verde e azul.

Published

2025-07-03

How to Cite

Marmitt, N., Vargas, S. T., Innocente, A. P., Ducatti, D. F., Fernandes, G. R., Dahmer, A., & Terres, M. da S. (2025). Immune checkpoint inhibitors: autoimmune events and data mining. Journal of Health Informatics, 17(1), 1160. https://doi.org/10.59681/2175-4411.v17.2025.1160

Issue

Section

Review

Similar Articles

1 2 3 4 5 6 7 8 9 10 > >> 

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)