General landscape of the use of artificial intelligence programs by hospital pharmacists
An integrative review
DOI:
https://doi.org/10.59681/2175-4411.v18.2026.1544Keywords:
Artifical Intelligence, Drug PrescriptionsAbstract
Objective: To analyze the general panorama of the use of artificial intelligence (AI) programs in the analysis of prescriptions by hospital pharmacists. Methods: Integrative review on the use of artificial intelligence programs in the review of prescriptions. Data collection was performed in the indexed databases MedLine/PubMed, BVS-BIREME, Web of Science, Scopus and in the gray literature. The studies were categorized and analyzed for methodological quality. Results: Nine articles were included, grouped into two categories: error detection and process optimization (5 studies) and prevention of adverse events and prioritization of critical cases (4 studies). AI contributed to reducing medication errors, automating repetitive tasks and prioritizing high-risk prescriptions, increasing efficiency and safety. Conclusion: Although there is some evidence of positive impacts that AI optimizes prescription analysis in hospital pharmacy, there are limitations such as dependence on data quality, need for frequent updates, integration with electronic medical records and use by trained professionals.
Downloads
References
Gomes AD, Galato D, Silva EV. Erros de prescrição de medicamentos potencialmente perigosos em um hospital terciário. Rev Bras Farm Hosp Serv Saude. 2017;8(3):42-7.
Leitão CL et al. Artificial intelligence in the clinical pharmacy service in a public hospital in Belo Horizonte/MG. Rev Bras Farm Hosp Serv Saude. 2023;14(3):0991.
Schiff GD et al. Screening for medication errors using an outlier detection system. J Am Med Inform Assoc. 2017;24(2):281-7.
Damasceno EMA et al. O papel do profissional farmacêutico no âmbito hospitalar. Rev Multitexto. 2019;7(1):47-52.
Amazonas LEL. A intervenção farmacêutica nos erros de prescrição em unidades de saúde: uma revisão integrativa [Trabalho de Conclusão de Curso]. Manaus: Universidade Federal do Amazonas; 2021.
Rocha MB, Silveira BP, Pilger D. Aprendizado de máquina nos serviços farmacêuticos: uma revisão integrativa. Clin Biomed Res. 2023;43(1):75-82.
Silva WAM. Tecnologias emergentes na assistência farmacêutica: explorando o uso da inteligência artificial na prevenção de erros de medicação [Trabalho de Conclusão de Curso]. Recife: Universidade Federal de Pernambuco; 2023.
Alshakrah MA, Steinke DT, Lewis PJ. Patient prioritization for pharmaceutical care in hospital: a systematic review of assessment tools. Res Social Adm Pharm. 2019;15(6):767-79.
Nunes HC, Guimarães RMC, Dadalto L. Desafios bioéticos do uso da inteligência artificial em hospitais. Rev Bioét. 2022;30(1):82-93.
Botelho LLR, Cunha CCA, Macedo M. O método da revisão integrativa nos estudos organizacionais. Gestão Soc. 2011;5(11):121-36.
Mascarenhas VH et al. Evidências científicas sobre métodos não farmacológicos para alívio da dor do parto. Acta Paul Enferm. 2019;32(3):350-7.
Ouzzani M et al. Rayyan: a web and mobile app for systematic reviews. Syst Rev. 2016;5(1):210.
Page MJ et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021;372:n71.
Howick J et al. The Oxford 2011 levels of evidence. Oxford Centre for Evidence-Based Medicine. 2011 [citado 2024 out 25]. Disponível em: https://www.cebm.ox.ac.uk/resources/levels-of-evidence/ocebm-levels-of-evidence.
Smoke S. Inteligência artificial em farmácia: um guia para clínicos. Am J Health Syst Pharm. 2024;81(14):641-6.
Huang K et al. CASTER: predicting drug interactions with chemical substructure representation. AAAI Conf Artif Intell. 2020;34(1):702-9.
Flynn A. Using artificial intelligence in health-system pharmacy practice: finding new patterns that matter. Am J Health Syst Pharm. 2019;76(9):622-7.
Obermeyer Z et al. Dissecting racial bias in an algorithm used to manage the health of populations. Science. 2019;366(6464):447-53.
Zhou N et al. Concordance study between IBM Watson for Oncology and clinical practice for patients with cancer in China. Oncologist. 2019;24(6):812-9.
Vaid A et al. Implications of the use of artificial intelligence predictive models in health care settings: a simulation study. Ann Intern Med. 2023;176(10):1358-69.
Lee P, Bubeck S, Petro J. Benefits, limits, and risks of GPT-4 as an artificial intelligence chatbot for medicine. N Engl J Med. 2023;388(13):1233-9.
De Freitas GRM et al. Principais dificuldades enfrentadas por farmacêuticos para exercerem suas atribuições clínicas no Brasil. Rev Bras Farm Hosp Serv Saude. 2016;7(3):35-41.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2026 Camili Gomes Pereira, Isabel Galdino da Silva Côrrea, Zilda de Santana Gonsalves

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Submission of a paper to Journal of Health Informatics is understood to imply that it is not being considered for publication elsewhere and that the author(s) permission to publish his/her (their) article(s) in this Journal implies the exclusive authorization of the publishers to deal with all issues concerning the copyright therein. Upon the submission of an article, authors will be asked to sign a Copyright Notice. Acceptance of the agreement will ensure the widest possible dissemination of information. An e-mail will be sent to the corresponding author confirming receipt of the manuscript and acceptance of the agreement.
