Caracterización y Clasificación de Conjuntos Dermatoscópicos Desequilibrados
DOI:
https://doi.org/10.59681/2175-4411.v15.iEspecial.2023.1085Palabras clave:
Neoplasias Cutáneas, Informática Médica, Inteligencia ArtificialResumen
Objetivo: investigar técnicas de inteligencia computacional para caracterizar y clasificar conjuntos desequilibrados de lesiones dermatoscópicas. Métodos: El método desarrollado incluye técnicas de preprocesamiento de imágenes, extracción de atributos, sobremuestreo, selección de atributos y construcción y evaluación de clasificadores. Se evaluaron 20 configuraciones del método en 274 dermatoscopias públicas con 48 melanomas y 226 nevos. Resultados: La mayor precisión promedia, 83,57%, se alcanzó despues de reducir el número de características en al menos un 48,86%. En general, el sobremuestreo mejoró la sensibilidad promedio. Conclusión: Los mejores resultados del método en la caracterización y clasificación de un conjunto dermatoscópico desequilibrado fueron prometedores y competitivos con algunas referencias recientes.
Citas
Bansal P, Garg R, Soni P. Detection of melanoma in dermoscopic images by integrating features extracted using handcrafted and deep learning models. Comput Ind Eng. 2022;168:108060.
Kaur R, GholamHosseini H, Sinha R. Hairlines removal and low contrast enhancement of melanoma skin images using convolutional neural network with aggregation of contextual information. Biomed Signal Process Control. 2022;76:103653.
Pathan S, Ali T, Vincent S, Nanjappa Y, David RM, Kumar OP. A dermoscopic inspired system for localization and malignancy classification of melanocytic lesions. Appl Sci (Basel). 2022;12(9):4243.
Popecki P, Jurczyszyn K, Ziętek M, Kozakiewicz M. Texture analysis in diagnosing skin pigmented lesions in normal and polarized light - a preliminary report. J Clin Med. 2022 Apr 29;11(9):2505.
Alazzam MB, Alassery F, Almulihi A. Diagnosis of melanoma using deep learning. Math Probl Eng. 2021;2021:1423605.
Javaid A, Sadiq M, Akram F. Skin cancer classification using image processing and machine learning. In: Zafar-Uz-Zaman M, Siddiqui NA, Iqbal M, et al., editors. Proceedings of the 18th International Bhurban Conference on Applied Sciences and Technologies; 2021; Islamabad, Pakistan. [New York]: Curran Associates; 2021. p. 439-44.
Valdés-Morales KL, Peralta-Pedrero ML, Cruz FJ, Morales-Sánchez MA. Diagnostic accuracy of dermoscopy of actinic keratosis: a systematic review. Dermatol Pract Concept. 2020;10(4):e2020121.
Lee HD, Mendes AI, Spolaôr N, Oliva JT, Sabino Parmezan AR, Chung WF, et al. Dermoscopic assisted diagnosis in melanoma: Reviewing results, optimizing methodologies and quantifying empirical guidelines. Knowl-Based Syst. 2018;158:9-24.
Instituto Nacional de Câncer (BR). Estimativa 2020: incidência de câncer no Brasil [Internet]. Rio de Janeiro: Instituto Nacional de Câncer; 2019 [cited 2022 Jul 13]. Available from: https://www.inca.gov.br/sites/ufu.sti.inca.local/files//media/document//estimativa-2020-incidencia-de-cancer-no-brasil.pdf.
Chollet F, Allaire JJ. Deep learning in R. Shelter Island: Manning publications; 2018. 335 p.
Witten IH, Frank E, Hall MA, Pal CJ. Data mining: practical machine learning tools and techniques. 4a. ed. Burlington: Morgan Kaufmann; 2016. 654 p.
Liu H, Motoda H. Computational methods of feature selection. Boca Ratón: Chapman & Hall/CRC; 2007. 411 p.
Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minority over-sampling technique. J Artif Intell Res. 2002;16(1):321-57.
Grezzana APB, Lee HD, Spolaôr N, Wu FC. Extração e Seleção de Atributos para Processamento e Análise de Imagens Médicas. In: Pró-Reitoria de Pesquisa da Universidade de São Paulo, editor. Anais do Simpósio Internacional de Iniciação Científica e Tecnológica da USP; 2021; São Carlos, Brasil. São Paulo: Universidade de São Paulo; 2021. p. 1-1.
Grezzana APB, Lee HD, Spolaôr N, Wu FC. Segmentação, Caracterização e Classificação de Imagens Dermoscópicas Usando Seleção de Atributos. In: Comitê Assessor de Bolsas de Iniciação Científica da Universidade Estadual do Oeste do Paraná, editor. Anais do Encontro Anual de Iniciação Científica, Tecnológica e Inovação da Unioeste; 2021; Cascavel, Brasil. Cascavel: Universidade Estadual do Oeste do Paraná; 2021. p. 1-1.
Merck Sharp & Dohme. Nevos [Internet]. Rahway: Merck Sharp & Dohme; 2020 [cited 2022 Jul 13]. Available from: https://www.msdmanuals.com/pt-br/casa/dist%C3%BArbios-da-pele/tumores-cut%C3%A2neos-n%C3%A3o-cancerosos/nevos.
Kuhn M, Johnson K. Applied predictive modelling. New York: Springer; 2013. 613 p.
Haralick RM, Shanmugam K, Dinstein I. Textural features for image classification. IEEE Trans Syst Man Cybern. 1973;SMC-3(6):610-21.
Laws KI. Texture energy measures. In: Baumann LS, editor. Proceedings of the Defense Advanced Research Projects Agency Image Understanding Workshop; 1979; Los Angeles, United States. [Arlington]: Science Applications; [1979?]. p. 47-51.
Smit S, Hoefsloot HCJ, Smilde AK. Statistical data processing in clinical proteomics. J Chromatogr B Analyt Technol Biomed Life Sci. 2008;866(1):77-88.
Carvalho VAM, Spolaôr N, Cherman EA, Monard MC. A Framework for Multi-label Exploratory Data Analysis: ML-EDA. In: Ezzatti P, Delgado A, editors. Proceedings of the Latin American Computing Conference; 2014; Montevidéu, Uruguai. [New York]: Curran Associates; 2014. p. 1-12.
Oliva JT, Lee HD, Spolaôr N, Coy CSR, Chung WF. Prototype system for feature extraction, classification and study of medical images. Expert Syst and Appl. 2016;63:267-83.
Amadasun M, King R. Textural features corresponding to textural properties. IEEE Trans Syst Man Cybern. 1989;19(5):1264-74.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2023 Newton Spolaôr, Huei Diana Lee, Weber Shoity Resende Takaki, Leandro Augusto Ensina, Antonio Rafael Sabino Parmezan, Matheus Maciel, Claudio Saddy Rodrigues Coy, Feng Chung Wu
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-CompartirIgual 4.0.
La sumisión de un artículo a el Journal of Health Informatics es entendida como exclusiva y que no esta siendo considerado para publicación en otro periódico. La permisión de los autores para la publicación de su artículo en lo JHI implica en la exclusiva autorización concedida a los editores para su inclusión en la revista. Al someter un artículo, a lo autor será solicitada la permisión electrónica de una Nota de Copyright. Una mensaje electrónica será enviada a lo autor correspondiente confirmando el recibo del manuscrito y lo aceite de la Nota de Copyright.