Evaluación del aprendizaje por transferencia para la detección de tumores cerebrales en imágenes medicas

Autores/as

  • André Gonçalves Jardim UFCSPA
  • Carla Diniz Lopes Becker UFCSPA
  • Thatiane Alves Pianoski UFCSPA
  • Viviane Rodrigues Botelho UFCSPA

DOI:

https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1302

Palabras clave:

Aprendizaje por Transferencia, Red Neuronal Convolucional, Tumor Cerebral

Resumen

Objetivo: Con el aumento de la viabilidad de la aplicación de redes neuronales convolucionales (CNNs), se objetivó evaluar el uso de esta tecnología para la detección de tumores cerebrales en imágenes de resonancia magnética computarizada. Método: Se desarrollaron dos modelos distintos de CNN, uno con el uso de transferencia de aprendizaje y otro sin ella, para clasificar la ocurrencia de tumores cerebrales. Resultados: Se obtuvo, con el modelo sin el uso de transferencia de aprendizaje, una precisión del 99,67%, con una sensibilidad del 100% y una especificidad del 99,34%; con el modelo que usó transferencia de aprendizaje, se obtuvo una precisión del 98%, con una sensibilidad del 98,32% y una especificidad del 97,69%. Conclusión: Este estudio destaca la eficacia de las CNN en la detección de tumores cerebrales, sugiriendo el uso de sistemas inteligentes como herramientas auxiliares.

Biografía del autor/a

André Gonçalves Jardim, UFCSPA

Master’s Student, Federal University of Health Sciences of Porto Alegre – UFCSPA, Porto Alegre (RS), Brazil.

Carla Diniz Lopes Becker, UFCSPA

Ph.D., Federal University of Health Sciences of Porto Alegre – UFCSPA, DECESA, Porto Alegre (RS), Brazil.

Thatiane Alves Pianoski, UFCSPA

Ph.D., Federal University of Health Sciences of Porto Alegre – UFCSPA, DECESA, Porto Alegre (RS), Brazil.

Viviane Rodrigues Botelho, UFCSPA

Ph.D., Federal University of Health Sciences of Porto Alegre – UFCSPA, DECESA, Porto Alegre (RS), Brazil.

Citas

Rethemiotaki I. Brain tumour detection from magnetic resonance imaging using convolutional neural networks. Contemp Oncol [Internet]. 2023 [cited 2024 Apr 21];27(4):230. Available from: /pmc/articles/PMC10883197/ DOI: https://doi.org/10.5114/wo.2023.135320

Fritz A, Percy C, Jack A. International Classification of Diseases for Oncology. Third. Vol. 1. Switzerland: World Health Organization; 2000. 0–222 p.

Tandel GS, Biswas M, Kakde OG, Tiwari A, Suri HS, Turk M, et al. A review on a deep learning perspective in brain cancer classification. Cancers (Basel) [Internet]. 2019 Jan 18 [cited 2021 Dec 12];11(1):111. Available from: https://www.mdpi.com/2072-6694/11/1/111/htm DOI: https://doi.org/10.3390/cancers11010111

Kang J, Ullah Z, Gwak J. Mri-based brain tumor classification using ensemble of deep features and machine learning classifiers. Sensors [Internet]. 2021 Mar 22 [cited 2021 Dec 12];21(6):1–21. Available from: https://www.mdpi.com/1424-8220/21/6/2222/htm

Patel AP, Fisher JL, Nichols E, Abd-Allah F, Abdela J, Abdelalim A, et al. Global, regional, and national burden of brain and other CNS cancer, 1990-2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet Neurol [Internet]. 2019 Apr 1 [cited 2024 Apr 22];18(4):376–93. Available from: https://pubmed.ncbi.nlm.nih.gov/30797715/

Naseer A, Yasir T, Azhar A, Shakeel T, Zafar K. Computer-Aided Brain Tumor Diagnosis: Performance Evaluation of Deep Learner CNN Using Augmented Brain MRI. Int J Biomed Imaging. 2021;2021.

Fernandes SL, Tanik UJ, Rajinikanth V, Karthik KA. A reliable framework for accurate brain image examination and treatment planning based on early diagnosis support for clinicians. Neural Comput Appl [Internet]. 2020 Oct 1 [cited 2024 Apr 22];32(20):15897–908. Available from: https://link.springer.com/article/10.1007/s00521-019-04369-5 DOI: https://doi.org/10.1007/s00521-019-04369-5

Naseer A, Yasir T, Azhar A, Shakeel T, Zafar K. Computer-Aided Brain Tumor Diagnosis: Performance Evaluation of Deep Learner CNN Using Augmented Brain MRI. Int J Biomed Imaging. 2021;2021. DOI: https://doi.org/10.1155/2021/5513500

Naseer A, Zafar K. Comparative Analysis of Raw Images and Meta Feature based Urdu OCR using CNN and LSTM. International Journal of Advanced Computer Science and Applications. 2018;9(1):419–24. DOI: https://doi.org/10.14569/IJACSA.2018.090157

Naseer A, Zafar K. Meta features-based scale invariant OCR decision making using LSTM-RNN. Comput Math Organ Theory [Internet]. 2019 Jun 1 [cited 2024 Apr 22];25(2):165–83. Available from: https://link.springer.com/article/10.1007/s10588-018-9265-9 DOI: https://doi.org/10.1007/s10588-018-9265-9

Papageorgiou V. Brain tumor detection based on features extracted and classified using a low-complexity neural network. Traitement du Signal. 2021 Jun 1;38(3):547–54.

Papageorgiou EI, Spyridonos PP, Glotsos DT, Stylios CD, Ravazoula P, Nikiforidis GN, et al. Brain tumor characterization using the soft computing technique of fuzzy cognitive maps. Applied Soft Computing Journal. 2008 Jan 1;8(1):820–8. DOI: https://doi.org/10.1016/j.asoc.2007.06.006

Deepak S, Ameer PM. Brain tumor classification using deep CNN features via transfer learning. Comput Biol Med [Internet]. 2019 Aug 1 [cited 2024 Apr 28];111. Available from: https://pubmed.ncbi.nlm.nih.gov/31279167/ DOI: https://doi.org/10.1016/j.compbiomed.2019.103345

Wu M, Liu Q, Yan C, Sen G. Multi-Classification of Brain Tumors on Magnetic Resonance Images Using an Ensemble of Pre-Trained Convolutional Neural Networks. Curr Med Imaging [Internet]. 2022 Apr 18 [cited 2024 Apr 28];19(1):65–76. Available from: https://pubmed.ncbi.nlm.nih.gov/35430973/ DOI: https://doi.org/10.2174/1573405618666220415122843

Swati ZNK, Zhao Q, Kabir M, Ali F, Ali Z, Ahmed S, et al. Brain tumor classification for MR images using transfer learning and fine-tuning. Comput Med Imaging Graph [Internet]. 2019 Jul 1 [cited 2024 Apr 28];75:34–46. Available from: https://pubmed.ncbi.nlm.nih.gov/31150950/ DOI: https://doi.org/10.1016/j.compmedimag.2019.05.001

Kang J, Ullah Z, Gwak J. Mri-based brain tumor classification using ensemble of deep features and machine learning classifiers. Sensors. 2021 Mar 22;21(6):1–21. DOI: https://doi.org/10.3390/s21062222

Br35H :: Detecção de tumor cerebral 2020 | Kaggle [Internet]. [cited 2021 Dec 12]. Available from: https://www.kaggle.com/ahmedhamada0/brain-tumor-detection

Papageorgiou V. Brain tumor detection based on features extracted and classified using a low-complexity neural network. Traitement du Signal. 2021 Jun 1;38(3):547–54. DOI: https://doi.org/10.18280/ts.380302

Selvaraju RR, Cogswell M, Das A, Vedantam R, Parikh D, Batra D. Grad-CAM: Visual Explanations from Deep Networks via Gradient-based Localization. Int J Comput Vis [Internet]. 2016 Oct 7 [cited 2024 May 27];128(2):336–59. Available from: http://arxiv.org/abs/1610.02391 DOI: https://doi.org/10.1007/s11263-019-01228-7

Publicado

2024-11-19

Cómo citar

Jardim, A. G., Becker, C. D. L., Pianoski, T. A., & Botelho, V. R. (2024). Evaluación del aprendizaje por transferencia para la detección de tumores cerebrales en imágenes medicas. Journal of Health Informatics, 16(Especial). https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1302

Artículos similares

<< < 8 9 10 11 12 13 14 15 16 17 > >> 

También puede {advancedSearchLink} para este artículo.

Artículos más leídos del mismo autor/a