Evaluación de modelos de lenguaje de gran escala para la detección de anafilaxia en notas clínicas

Autores/as

  • Matheus Matos Machado University of São Paulo
  • Joice Basílio Machado Marques Sofya
  • Fabrício A. Gualdani Universidade Estadual Paulista
  • Monica Pugliese Heleodoro dos Santos Hospital Sírio-Libanês
  • Fabio Cerqueira Lario Hospital Sírio-Libanês
  • Chayanne Andrade de Araujo Hospital Sírio-Libanês
  • Fabiana Andrade Nunes Oliveira Hospital Sírio-Libanês
  • Luis Felipe Chiaverini Ensina Hospital Sírio-Libanês
  • Ricardo Marcondes Marcacini University of São Paulo
  • Dilvan Moreira University of São Paulo

DOI:

https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1364

Palabras clave:

Anafilaxia, Modelos de Lenguaje de Gran Escala, Inteligencia artificial

Resumen

Objetivo: Este estudio tiene como objetivo evaluar el potencial de cuatro Modelos de Lenguaje de Gran Escala (LLMs) (GPT-4 Turbo, GPT-3.5 Turbo, Gemini 1.0 Pro y OpenChat 3.5) en la detección de anafilaxia en Registros Médicos Electrónicos (EMRs). Método: El método empleado involucró el análisis de 150 informes médicos, utilizando diferentes prompts para probar la capacidad de los LLMs para identificar la anafilaxia. Resultados: Los resultados indican que todos los modelos obtuvieron cero falsos negativos, destacándose el GPT-4 Turbo, que alcanzó un 97% de precisión y un 91% de exactitud. Conclusión: Se concluye que los LLMs demuestran potencial para ayudar en la identificación de la anafilaxia, especialmente el GPT-4 Turbo. La investigación refuerza la importancia del diseño eficiente de prompts para optimizar la precisión de los resultados.

Biografía del autor/a

Matheus Matos Machado, University of São Paulo

B.Sc., Department of Computer Science, University of São Paulo (USP), São Carlos (SP), Brazil.

Joice Basílio Machado Marques, Sofya

Ph.D., Department of Research, Sofya, São Paulo (SP), Brazil.

Fabrício A. Gualdani, Universidade Estadual Paulista

M.Sc., Department of Information Science, Universidade Estadual Paulista (UNESP), Marília (SP), Brazil.

Monica Pugliese Heleodoro dos Santos, Hospital Sírio-Libanês

M.Sc., Division of Allergy, Hospital Sírio-Libanês, São Paulo (SP), Brazil.

Fabio Cerqueira Lario, Hospital Sírio-Libanês

Ph.D., Division of Allergy, Hospital Sírio-Libanês, São Paulo (SP), Brazil.

Chayanne Andrade de Araujo, Hospital Sírio-Libanês

M.Sc., Division of Allergy, Hospital Sírio-Libanês, São Paulo (SP), Brazil.

Fabiana Andrade Nunes Oliveira, Hospital Sírio-Libanês

M.Sc., Division of Allergy, Hospital Sírio-Libanês, São Paulo (SP), Brazil.

Luis Felipe Chiaverini Ensina, Hospital Sírio-Libanês

Ph.D., Division of Allergy, Hospital Sírio-Libanês, São Paulo (SP), Brazil.

Ricardo Marcondes Marcacini, University of São Paulo

Ph.D., Department of Computer Science, University of São Paulo (USP), São Carlos (SP), Brazil.

Dilvan Moreira, University of São Paulo

Ph.D., Department of Computer Science, University of São Paulo (USP), São Carlos (SP), Brazil.

Citas

Simons FER, Ardusso LR, Bilò MB, Cardona V, Ebisawa M, El-Gamal YM, et al. International consensus on (ICON) anaphylaxis. World Allergy Organ J. 2014;7(1):9. doi: 10.1186/1939-4551-7-9. PMID: 24920969; PMCID: PMC4038846.

Ensina LF, Min TK, Félix MMR, de Alcântara CT, Costa C. Acute urticaria and anaphylaxis: Differences and similarities in clinical management. Front Allergy. 2022;3:840999. Available from: https://www.frontiersin.org/articles/10.3389/falgy.2022.840999.

Cardona V, Ansotegui IJ, Ebisawa M, El-Gamal Y, Fernandez Rivas M, Fineman S, et al. World Allergy Organization anaphylaxis guidance 2020. World Allergy Organ J. 2020 Oct;13(10):100472. doi: 10.1016/j.waojou.2020.100472. Available from: https://linkinghub.elsevier.com/retrieve/pii/S1939455120303756.

Liu X, Shi Y, Zhang D, Chen M, Xu Y, Zhao J, et al. Management of immune related adverse events through electronic multidisciplinary consultation: Five years of experience from Peking Union Medical College Hospital. J Clin Oncol. 2023;41(16_suppl)

. doi: 10.1200/JCO.2023.41.16_suppl.e14712. Available from: https://doi.org/10.1200/JCO.2023.41.16_suppl.e14712.

Gao Y, Li R, Caskey J, Dligach D, Miller T, Churpek MM, et al. Leveraging a medical knowledge graph into large language models for diagnosis prediction. arXiv [cs]. 2023 Aug. Available from: http://arxiv.org/abs/2308.14321.

Carrell DS, Gruber S, Floyd JS, Bann MA, Cushing-Haugen KL, Johnson RL, et al. Improving methods of identifying anaphylaxis for medical product safety surveillance using natural language processing and machine learning. Am J Epidemiol. 2023 Feb;192(2):283-295. doi: 10.1093/aje/kwac182. Available from: https://academic.oup.com/aje/article/192/2/283/6795959.

Kural KC, Mazo I, Walderhaug M, Santana-Quintero L, Karagiannis K, Thompson EE, et al. Using machine learning to improve anaphylaxis case identification in medical claims data. JAMIA Open. 2023 Oct;6(4). doi: 10.1093/jamiaopen/ooad090. Available from: https://academic.oup.com/jamiaopen/article/doi/10.1093/jamiaopen/ooad090/7331170.

Tu H, Han L, Nenadic G. Extraction of medication and temporal relation from clinical text using neural language models. arXiv [cs]. 2023 Oct. doi: 10.48550/arXiv.2310.02229. Available from: http://arxiv.org/abs/2310.02229.

Pan J, Zhang Z, Peters SR, Vatanpour S, Walker RL, Lee S, et al. Cerebrovascular disease case identification in inpatient electronic medical record data using natural language processing. Brain Inform. 2023 Sep;10(1):22. doi: 10.1186/s40708-023-00203-w. Available from: https://doi.org/10.1186/s40708-023-00203-w.

Lin E, Zwolinski R, Wu JT, La J, Goryachev S, Huhmann L, et al. Machine learning-based natural language processing to extract PD-L1 expression levels from clinical notes. Health Inform J. 2023 Jul;29(3):14604582231198021. doi: 10.1177/14604582231198021. Available from: http://journals.sagepub.com/doi/10.1177/14604582231198021.

Zitu MM, Zhang S, Owen DH, Chiang C, Li L. Generalizability of machine learning methods in detecting adverse drug events from clinical narratives in electronic medical records. Front Pharmacol. 2023 Jul;14:1218679. doi: 10.3389/fphar.2023.1218679. Available from: https://www.frontiersin.org/articles/10.3389/fphar.2023.1218679/full.

Afshar M, Adelaine S, Resnik F, Mundt MP, Long J, Leaf M, et al. Deployment of real-time natural language processing and deep learning clinical decision support in the electronic health record: Pipeline implementation for an opioid misuse screener in hospitalized adults. JMIR Med Inform. 2023 Apr;11. doi: 10.2196/44977. Available from: https://medinform.jmir.org/2023/1/e44977.

Oliveira LES, Peters AC, Silva AMP, Gebeluca CP, Gumiel YB, Cintho LMM, et al. SemClinBr - a multi-institutional and multi-specialty semantically annotated corpus for Portuguese clinical NLP tasks. J Biomed Semantics. 2022 May;13(1):1. doi: 10.1186/s13326-022-00269-1. Available from: https://doi.org/10.1186/s13326-022-00269-1.

Wang G, Cheng S, Zhan X, Li X, Song S, Liu Y. OpenChat: Advancing open-source language models with mixed-quality data. arXiv [cs.CL]. 2024. Available from: https://arxiv.org/abs/2309.11235.

Publicado

2024-11-19

Cómo citar

Machado, M. M., Marques, J. B. M., Gualdani, F. A., dos Santos, M. P. H., Lario, F. C., de Araujo, C. A., … Moreira, D. (2024). Evaluación de modelos de lenguaje de gran escala para la detección de anafilaxia en notas clínicas. Journal of Health Informatics, 16(Especial). https://doi.org/10.59681/2175-4411.v16.iEspecial.2024.1364

Artículos similares

<< < 7 8 9 10 11 12 13 14 15 16 > >> 

También puede {advancedSearchLink} para este artículo.