Automatic detection of pathological retinal images using color and shape features

Autores/as

  • Flávio Henrique Duarte de Araújo Universidade Federal do Piauí
  • Rodrigo de Melo Souza Veras Departamento de Computação, Universidade Federal do Piauí, Teresina.
  • Romuere Rodrigues Veloso e Silva Universidade Federal do Piauí, Campus Senador Helvídio Nunes de Barros, Picos. Engenharia de Teleinformática, Universidade Federal do Ceará, Fortaleza
  • André Macedo Santana Departamento de Computação, Universidade Federal do Piauí, Teresina.
  • Fátima Nelsizeuma Sombra de Medeiros Engenharia de Teleinformática, Universidade Federal do Ceará, Fortaleza

Palabras clave:

Machine Learning, Diagnostic Imaging, Exudates and Transudates

Resumen

Objective: We propose an algorithm for exudate detection and pathological retinal images identification. Method: We improved an existing algorithm that detects exudates in a retinal image replacing the k-means clustering by fuzzy k-means and applied an additional step to detect optical disc (OD). Furthermore, our approach added a classification process to eliminate remaining false exudate regions. Finally, we classify the retinal image as pathological or non-pathological by measuring the ratio of candidate exudate regions before classification and the number of regions removed by the classification step. Results: Tests were performed on DIARETDB1 database, and the results obtained were; Fmeasure – 90%, area under the ROC curve – 88% and the Kappa coefficient – 77% (very good). Conclusion: The success of the algorithm is due mostly to the OD detection approach and the classification step. The obtained results confirmed that the proposed algorithm outperformed the others.

Descargas

Los datos de descargas todavía no están disponibles.

Publicado

2017-11-27

Cómo citar

Duarte de Araújo, F. H., Souza Veras, R. de M., Veloso e Silva, R. R., Santana, A. M., & Sombra de Medeiros, F. N. (2017). Automatic detection of pathological retinal images using color and shape features. Journal of Health Informatics, 9(4). Recuperado a partir de https://jhi.sbis.org.br/index.php/jhi-sbis/article/view/519

Número

Sección

Artículo Original

Artículos similares

1 2 3 4 5 6 7 8 9 10 > >> 

También puede {advancedSearchLink} para este artículo.

Artículos más leídos del mismo autor/a