Reconhecimento de estresse via eletrocardiograma utilizando dimensionalidade reduzida e aprendizagem de máquina
Palabras clave:
Aprendizado de Máquina, Eletrocardiografia, Dispositivos Eletrônicos VestíveisResumen
Objetivo: Reconhecer eventos de estresse de um usuário usando técnicas de redução de dimensionalidade e classificadores de aprendizagem de máquina. Método: Estudo realizado com sinal ECG captado através de dispositivo vestível, com extração das características dos dados obtidos e aplicação da redução de dimensionalidade sobre o conjunto, e experimentos dos modelos com e sem redução. Resultados: Foram realizados experimentos com K-Nearest Neighbors (KNN), Naive Bayes, Decision Tree e Random Forest. Foi observado que a maioria dos modelos conseguiu detectar estresse eficientemente, obtendo uma acurácia média de 81% sem aplicação da redução e 83,5% aplicando a redução. Sendo Random Forest o melhor classificador final, com acurácia de 90%. Conclusão: A redução de dimensionalidade demonstrou-se eficaz em melhorar o desempenho geral do método KNN. Além de que, ao ser testada em métodos mais robustos, não apresentou quedas significativas nas métricas propostas, diminuindo o custo computacional de processamento dos algoritmos.Descargas
Publicado
Cómo citar
Número
Sección
Licencia
La sumisión de un artículo a el Journal of Health Informatics es entendida como exclusiva y que no esta siendo considerado para publicación en otro periódico. La permisión de los autores para la publicación de su artículo en lo JHI implica en la exclusiva autorización concedida a los editores para su inclusión en la revista. Al someter un artículo, a lo autor será solicitada la permisión electrónica de una Nota de Copyright. Una mensaje electrónica será enviada a lo autor correspondiente confirmando el recibo del manuscrito y lo aceite de la Nota de Copyright.