Optimizing internal auditing of surgical records: an AI approach
DOI:
https://doi.org/10.59681/2175-4411.v17.2025.1478Keywords:
Hospital audit, Artifical Intelligence, Machine LearningAbstract
Professional with solid academic background and extensive experience in the health area, with emphasis on systems auditing and hospital management. Master's student in Biomedical Engineering from the Federal University of Pernambuco (UFPE), with specializations in Health Systems Auditing, Nephrology Nursing, Intensive Care Nursing, Conflict Mediation and Nonviolent Communication, in addition to an MBA in Hospital Management. My career is marked by working as a clinical nurse and coordinating teams in specialized health units (Nephrology). Over the years, I have developed in-depth knowledge of care practices, with emphasis on the areas of Nephrology, Hospital Auditing and Health Systems Management, always focused on improving the quality of patient care. I currently work in the Information Technology and Digital Health (SETISD) and Contracting and Regulation (STCOR) sector of HC-UFPE, where I contribute directly to the implementation of technological innovations in the hospital environment, including the development of data-based control panels and management reports. My complementary training includes several short courses in areas such as hospital planning and management, integrative and complementary practices, digital health, among others. This diversity of qualifications allows me to have a broad and strategic vision of health, combining technical knowledge with the ability to lead and implement innovative projects.
Downloads
References
Pinheiro MB, Campos RKGG, Maniva SJC de F, Rolim KMC, Bonfim IM. Tecnologias disponíveis para o processo de auditoria interna em classificação de risco: revisão integrativa. Rev Bras Pesqui Em SaúdeBrazilian J Health Res. 2023;25(4):81–8.
Jacomini LDS, Mangiavacchi BM. AUDITORIA HOSPITALAR COMO INSTRUMENTO NA PREVENÇÃO DE ERROS MEDICAMENTOSOS. Múltiplos Acessos. 9 de junho de 2021;6(1):199–207.
Ceretta JC, Seibert RM, Callegaro ARC. Gestão hospitalar: a auditoria operacional como ferramenta estratégica para o controle de desperdícios. Rev Gest E Secr. 1o de março de 2023;14(3):2663–75.
Pimentel LCL, Virginio JPA, Albernaz CB, Souza DP de, Jesus CAC de, Paranaguá TT de B, et al. Avaliação da qualidade dos registros do processo de enfermagem por meio de auditoria retrospectiva. Rev Enferm UERJ. 12 de dezembro de 2023;31:e77316–e77316.
Caixeta FDC, Silva AA, Ferreira MV, Sales RDCA. AUDITORIA EM SAÚDE: NÃO CONFORMIDADES EM REGISTROS DE PRONTUÁRIOS CIRÚRGICOS. Int J Health Sci. 30 de outubro de 2024;3(2):181–2.
White J, Fu Q, Hays S, Sandborn M, Olea C, Gilbert H, et al. A Prompt Pattern Catalog to Enhance Prompt Engineering with ChatGPT [Internet]. arXiv; 2023 [citado 25 de março de 2025]. Disponível em: http://arxiv.org/abs/2302.11382
Liu NF, Lin K, Hewitt J, Paranjape A, Bevilacqua M, Petroni F, et al. Lost in the Middle: How Language Models Use Long Contexts [Internet]. arXiv; 2023 [citado 25 de março de 2025]. Disponível em: http://arxiv.org/abs/2307.03172
An S, Ma Z, Lin Z, Zheng N, Lou JG. Make Your LLM Fully Utilize the Context [Internet]. arXiv; 2024 [citado 25 de março de 2025]. Disponível em: http://arxiv.org/abs/2404.16811
Baker GA, Raut A, Shaier S, Hunter LE, Wense K von der. Lost in the Middle, and In-Between: Enhancing Language Models’ Ability to Reason Over Long Contexts in Multi-Hop QA [Internet]. arXiv; 2024 [citado 25 de março de 2025]. Disponível em: http://arxiv.org/abs/2412.10079
Chang Y, Wang X, Wang J, Wu Y, Yang L, Zhu K, et al. A Survey on Evaluation of Large Language Models [Internet]. arXiv; 2023 [citado 25 de março de 2025]. Disponível em: http://arxiv.org/abs/2307.03109
Verspoor K. “Fighting fire with fire” - using LLMs to combat LLM hallucinations. Nature. junho de 2024;630(8017):569–70.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Rita de Cássia Almeida Sales, Isaura Romero Peixoto, Shirley da Silva Jacinto de Oliveira Cruz, Wellington Pinheiro dos Santos

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.
Submission of a paper to Journal of Health Informatics is understood to imply that it is not being considered for publication elsewhere and that the author(s) permission to publish his/her (their) article(s) in this Journal implies the exclusive authorization of the publishers to deal with all issues concerning the copyright therein. Upon the submission of an article, authors will be asked to sign a Copyright Notice. Acceptance of the agreement will ensure the widest possible dissemination of information. An e-mail will be sent to the corresponding author confirming receipt of the manuscript and acceptance of the agreement.
