Brazilian Dataset for Retinal Lesion Analysis: A Deep Learning Diagnostic Pipeline

Autores

Palavras-chave:

Diabetic retinopathy, classification, segmentation, deep learning

Resumo

Diabetic retinopathy (DR) is a leading cause of vision loss in working-age adults, and early diagnosis is essential. However, limited infrastructure and a shortage of specialists restrict access to proper screening. To address this, we created the BDR-iD dataset using anonymized fundus images collected from an eye clinic in Pelotas, Brazil. From a total of 13,131 images collected between 2012 and 2024, 150 were selected and annotated based on DR presence and associated lesions. Deep learning models were evaluated, achieving an overall accuracy of 0.6667 in DR classification, but with poor performance in lesion segmentation and detection. The BDR-iD dataset aims to support the development of automated tools for DR diagnosis.

Downloads

Não há dados estatísticos.

Biografias Autor

Carlos Santos, Instituto Federal de Educação, Ciência e Tecnologia Farroupilha

Professor do Centro de Informática, Instituto Federal de Educação, Ciência e Tecnologia Farroupilha – IFFar, Alegrete (RS), Brasil.

Marcelo Dias, Universidade Federal de Pelotas

Bacharel em Ciência da Computação. Universidade Federal de Pelotas – UFPel, Pelotas (RS), Brasil.

Alejandro Pereira, Universidade Federal de Pelotas

Bacharel em Ciência da Computação. Universidade Federal de Pelotas – UFPel, Pelotas (RS), Brasil.

Marilton Aguiar, Universidade Federal de Pelotas

Professor Associado da Universidade Federal de Pelotas – UFPel, Pelotas (RS), Brasil.

Daniel Welfer, Universidade Federal de Santa Maria

Professor do Departamento de Computação Aplicada - DCOM da Universidade Federal de Santa Maria – UFSM, Santa Maria (RS), Brasil.

 

Laura Bernardes, Instituto Federal de Educação, Ciência e Tecnologia Farroupilha

Estudante do curso de Tecnologia em Análise e Desenvolvimento de Sistemas do Instituto Federal Farroupilha.

Artur Heckler, Instituto Federal de Educação, Ciência e Tecnologia Farroupilha

Estudante de curso Técnico em Informática no Instituto Federal Farroupilha.

Referências

International Council of Ophthalmology. Updated 2017 ICO Guidelines for Diabetic Eye Care [Internet]. San Francisco: ICO; 2017 [citado 2025 jun 6]. Disponível em: http://www.icoph.org/downloads/ICOGuidelinesforDiabeticEyeCare.pdf

Nayak J, Bhat PS, Acharya UR, Lim CM, Kagathi M. Automated identification of diabetic retinopathy stages using digital fundus images. J Med Syst. 2008;32(2):107–15.

Ting DSW, Cheung GCM, Wong TY. Diabetic retinopathy: global prevalence, major risk factors, screening practices and public health challenges: a review. Clin Exp Ophthalmol. 2016;44(4):260–77.

Chakrabarti R, Harper CA, Keeffe JE. Diabetic retinopathy management guidelines. Expert Rev Ophthalmol. 2012;7(5):417–39. Disponível em: https://doi.org/10.1586/eop.12.52

Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition [Internet]. 2015 [citado 2025 jun 6]. Disponível em: https://arxiv.org/abs/1409.1556

He K, Zhang X, Ren S, Sun J. Deep residual learning for image recognition [Internet]. 2015 [citado 2025 jun 6]. Disponível em: https://arxiv.org/abs/1512.03385

Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, et al. Going deeper with convolutions [Internet]. 2014 [citado 2025 jun 6]. Disponível em: https://arxiv.org/abs/1409.4842

Huang G, Liu Z, van der Maaten L, Weinberger KQ. Densely connected convolutional networks [Internet]. 2018 [citado 2025 jun 6]. Disponível em: https://arxiv.org/abs/1608.06993

Tan M, Le QV. EfficientNet: Rethinking model scaling for convolutional neural networks [Internet]. 2020 [citado 2025 jun 6]. Disponível em: https://arxiv.org/abs/1905.11946

Radosavovic I, Kosaraju RP, Girshick R, He K, Dollár P. Designing network design spaces [Internet]. 2020 [citado 2025 jun 6]. Disponível em: https://arxiv.org/abs/2003.13678

Iandola FN, Han S, Moskewicz MW, Ashraf K, Dally WJ, Keutzer K. SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and <0.5MB model size [Internet]. 2016 [citado 2025 jun 6]. Disponível em: https://arxiv.org/abs/1602.07360

Liu Z, Lin Y, Cao Y, Hu H, Wei Y, Zhang Z, et al. Swin Transformer: Hierarchical vision transformer using shifted windows [Internet]. 2021 [citado 2025 jun 6]. Disponível em: https://arxiv.org/abs/2103.14030

Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. Lect Notes Comput Sci. 2015;9351:234–41.

Oktay O, Schlemper J, Le Folgoc L, Lee M, Heinrich M, Misawa K, et al. Attention U-Net: Learning where to look for the pancreas. arXiv Preprint. 2018; arXiv:1804.03999.

Alom MZ, Hasan M, Yakopcic C, Taha TM, Asari VK. Recurrent residual convolutional neural network based on U-Net (R2U-Net) for medical image segmentation. arXiv Preprint. 2018; arXiv:1802.06955.

Publicado

2026-01-18

Como Citar

Santos, C., Dias, M., Pereira, A., Aguiar, M., Welfer, D., Bernardes, L., & Heckler, A. (2026). Brazilian Dataset for Retinal Lesion Analysis: A Deep Learning Diagnostic Pipeline. Journal of Health Informatics, 18(1). Obtido de https://jhi.sbis.org.br/index.php/jhi-sbis/article/view/1510

Edição

Secção

Artigo Original

Artigos Similares

1 2 3 4 5 6 7 8 9 10 > >> 

Também poderá iniciar uma pesquisa avançada de similaridade para este artigo.